halp me plss halp me plss

Answer:
fence length is 20 cm
Step-by-step explanation:
let fence be c
use Pythagoras theorem,
a² + b² = c²
here a is 12 cm and b is 16 cm
12² + 16² = c²
c = √12² + 16²
c = √400
c = 20
Answer:
The length of Fence will be 20 m.
Step-by-step explanation:
As per given question we have provided that :
Here's the required formula to find Fence (Diaognal) of rectangle :
[tex]\longrightarrow{\pmb{\rm{d = \sqrt{ {(l)}^{2} + {(w)}^{2}}}}}[/tex]
Substituting all the given values in the formula to find the length of Fence :
[tex]\longrightarrow{\sf{Fence = \sqrt{ {(l)}^{2} + {(w)}^{2}}}}[/tex]
[tex]\longrightarrow{\sf{Fence = \sqrt{ {(16)}^{2} + {(12)}^{2}}}}[/tex]
[tex]{\longrightarrow{\sf{Fence = \sqrt{ {(16 \times 16)}+ {(12 \times 12)}}}}}[/tex]
[tex]{\longrightarrow{\sf{Fence = \sqrt{ {(256)}+ {(144)}}}}}[/tex]
[tex]{\longrightarrow{\sf{Fence = \sqrt{256+ 144}}}}[/tex]
[tex]{\longrightarrow{\sf{Fence = \sqrt{400}}}}[/tex]
[tex]{\longrightarrow{\sf{\underline{\underline{\red{Fence = 20 \: m}}}}}}[/tex]
Hence, the length of Fence will be 20 m.
[tex]\rule{300}{2.5}[/tex]