Respuesta :

Answer:

fence length is 20 cm

Step-by-step explanation:

let fence be c

use Pythagoras theorem,

a² + b² = c²

here a is 12 cm and b is 16 cm

12² + 16² = c²

c = √12² + 16²

c = √400

c = 20

Answer:

The length of Fence will be 20 m.

Step-by-step explanation:

As per given question we have provided that :

  • Length of rectangle = 16 m
  • Width of rectangle = 12 m
  • Diaognal of rectangle = Fence

Here's the required formula to find Fence (Diaognal) of rectangle :

[tex]\longrightarrow{\pmb{\rm{d = \sqrt{ {(l)}^{2} + {(w)}^{2}}}}}[/tex]

  • d = diagonal
  • l = length
  • w = width

Substituting all the given values in the formula to find the length of Fence :

[tex]\longrightarrow{\sf{Fence = \sqrt{ {(l)}^{2} + {(w)}^{2}}}}[/tex]

[tex]\longrightarrow{\sf{Fence = \sqrt{ {(16)}^{2} + {(12)}^{2}}}}[/tex]

[tex]{\longrightarrow{\sf{Fence = \sqrt{ {(16 \times 16)}+ {(12 \times 12)}}}}}[/tex]

[tex]{\longrightarrow{\sf{Fence = \sqrt{ {(256)}+ {(144)}}}}}[/tex]

[tex]{\longrightarrow{\sf{Fence = \sqrt{256+ 144}}}}[/tex]

[tex]{\longrightarrow{\sf{Fence = \sqrt{400}}}}[/tex]

[tex]{\longrightarrow{\sf{\underline{\underline{\red{Fence = 20 \: m}}}}}}[/tex]

Hence, the length of Fence will be 20 m.

[tex]\rule{300}{2.5}[/tex]

ACCESS MORE