Respuesta :

The equation of the hyperbolas is [tex]\frac{x^2}{117} -\frac{y^2}{52} =1[/tex]

What are hyperbolas?

Hyperbolas are symmetrical open curve that are formed when a circular cone intersects a plane.

The given parameters are:

  • Foci: (-13,0) and (13,0)
  • Asymptotes: y = 2/3x, y = -2/3x

The equation of a hyperbola is represented as:

[tex]\frac{(x - h)^2}{a^2} -\frac{(y - k)^2}{b^2} =1[/tex]

The hyperbola passes through the origin.

So, we have:

[tex]\frac{(x - 0)^2}{a^2} -\frac{(y - 0)^2}{b^2} =1[/tex]

[tex]\frac{x^2}{a^2} -\frac{y^2}{b^2} =1[/tex]

Also, from the asymptotes, we have:

[tex]\frac ba = \frac 23[/tex]

Make b the subject

[tex]b= \frac 23a[/tex]

From the foci, we have:

[tex]a^2 + b^2 = 13^2[/tex]

Substitute [tex]b= \frac 23a[/tex]

[tex]a^2 + (\frac 23a)^2 = 13^2[/tex]

Evaluate the squares

[tex]a^2 + \frac 49a^2 = 13^2[/tex]

Add the fractions

[tex]\frac {13}9a^2 = 13^2[/tex]

Divide both sides by 13

[tex]\frac {1}9a^2 = 13[/tex]

Multiply both sides by 9

[tex]a^2 = 117[/tex]

Recall that:

[tex]b= \frac 23a[/tex]

Square both sides

[tex]b^2 = \frac 49a^2[/tex]

So, we have:

[tex]b^2 = \frac 49 \times 117[/tex]

[tex]b^2 = 52[/tex]

Recall that:

[tex]\frac{x^2}{a^2} -\frac{y^2}{b^2} =1[/tex]

So, we have:

[tex]\frac{x^2}{117} -\frac{y^2}{52} =1[/tex]

Hence, the equation of the hyperbolas is [tex]\frac{x^2}{117} -\frac{y^2}{52} =1[/tex]

Read more about hyperbolas at:

https://brainly.com/question/12919612

ACCESS MORE