Answer:
x = 2 ; y = 1
Step-by-step explanation:
GIVEN :-
SOLUTION :-
The easiest way to solve such questions where two linear equations (with two variables) ax + by = c and bx + ay = d are given is :-
1) Add both the equations :-
[tex]4x + 3y + 3x + 4y = 11 + 10[/tex]
[tex]=> 7x + 7y = 21[/tex]
Simplify it further.
[tex]7(x + y) = 21[/tex]
[tex]=> x + y = \frac{21}{7} = 3[/tex] ..... eqn.3
2) Substract both the equations :-
[tex]4x + 3y - 3x - 4y = 11 - 10[/tex]
[tex]=> x - y = 1[/tex] ..... eqn.4
3) Now add eqn.3 and eqn.4 to get the value of 'x' :-
[tex]x + y + x - y = 3 + 1[/tex]
[tex]=> 2x = 4[/tex]
[tex]=> x = \frac{4}{2} = 2[/tex]
4) Substitute the value of 'x' in either eqn.1 or eqn.2 and solve it to get the value of 'y' ( I'm here substituting it in eqn.1 ) :-
[tex]4 \times 2 +3y = 11[/tex]
[tex]=> 3y = 11 - 8 = 3[/tex]
[tex]=> y = \frac{3}{3} = 1[/tex]