Respuesta :

Answer:

x = 2 ; y = 1

Step-by-step explanation:

GIVEN :-

  • [tex]4x + 3y = 11[/tex] (eqn.1)
  • [tex]3x + 4y = 10[/tex] (eqn.2)

SOLUTION :-

The easiest way to solve such questions where two linear equations (with two variables) ax + by = c and bx + ay = d are given is :-

1) Add both the equations :-

[tex]4x + 3y + 3x + 4y = 11 + 10[/tex]

[tex]=> 7x + 7y = 21[/tex]

Simplify it further.

[tex]7(x + y) = 21[/tex]

[tex]=> x + y = \frac{21}{7} = 3[/tex] ..... eqn.3

2) Substract both the equations :-

[tex]4x + 3y - 3x - 4y = 11 - 10[/tex]

[tex]=> x - y = 1[/tex] ..... eqn.4

3) Now add eqn.3 and eqn.4 to get the value of 'x' :-

[tex]x + y + x - y = 3 + 1[/tex]

[tex]=> 2x = 4[/tex]

[tex]=> x = \frac{4}{2} = 2[/tex]

4) Substitute the value of 'x' in either eqn.1 or eqn.2 and solve it to get the value of 'y' ( I'm here substituting it in eqn.1 ) :-

[tex]4 \times 2 +3y = 11[/tex]

[tex]=> 3y = 11 - 8 = 3[/tex]

[tex]=> y = \frac{3}{3} = 1[/tex]