A carnival ride is in the shape of a wheel with a radius of 25 feet. The wheel has 20 cars attached to the center of the wheel. What is the central angle, arc length, and area of a sector between any two cars? Round answers to the nearest hundredth if applicable. You must show all work and calculations to receive credit. (10 points)

Respuesta :

Centre angle will be 360° as its totally a circle.

  • radius=r=25ft

Angle between two cars=360/20=18°

  • Arc length=L

[tex]\\ \sf\longmapsto L=\dfrac{\theta}{360}(2\pi r)[/tex]

[tex]\\ \sf\longmapsto L=\dfrac{18}{360}(2\pi(25))[/tex]

[tex]\\ \sf\longmapsto L=\dfrac{1}{20}(50\pi)[/tex]

[tex]\\ \sf\longmapsto L=2.5\pi ft[/tex]

Now

Area be A

[tex]\\ \sf\longmapsto A=\dfrac{1}{2}Lr^2[/tex]

[tex]\\ \sf\longmapsto A=\dfrac{1}{2}(2.5\pi)(25)^2[/tex]

[tex]\\ \sf\longmapsto A=625(2.5)\pi\dfrac{1}{2}[/tex]

[tex]\\ \sf\longmapsto A=1562.5\pi/2[/tex]

[tex]\\ \sf\longmapsto A=781\pi ft^2=[/tex]