Respuesta :

The answer is x = 4sqrt(11).

Use pythagorean theoram:

c^2 = b^2 + a^2
(24)^2 = (20)^2 + a^2
sqrt((24)^2 - (20)^2)) = a
a = 4sqrt(11)

Answer:

The value of x is 4√11.

Step-by-step explanation:

Solution :

Here, we have given that the two sides of triangle are 24 and 20.

Finding the third side of triangle by pythagorean theorem formula :

[tex]{\longrightarrow{\pmb{\sf{{(c)}^{2} = {(a)}^{2} + {(b)}^{2}}}}}[/tex]

  • [tex]\pink\star[/tex] c = 24
  • [tex]\pink\star[/tex] a = 20
  • [tex]\pink\star[/tex] b = x

Substituting all the given values in the formula to find the third side of triangle :

[tex]\begin{gathered}\qquad{\longrightarrow{\sf{{(c)}^{2} = {(a)}^{2} + {(b)}^{2}}}}\\\\\qquad{\longrightarrow{\sf{{(24)}^{2} = {(20)}^{2} + {(b)}^{2}}}}\\\\\qquad{\longrightarrow{\sf{{(24\times 24)} = {(20 \times 20)} + {(b)}^{2}}}}\\\\\qquad{\longrightarrow{\sf{{(576)} = {(400)} + {(b)}^{2}}}}\\\\ \qquad{\longrightarrow{\sf{{(b)}^{2} = 576 - 400}}}\\\\ \qquad{\longrightarrow{\sf{{(b)}^{2} = 176}}}\\\\\qquad{\longrightarrow{\sf{b = \sqrt{176}}}}\\\\\qquad{\longrightarrow{\sf{b = 4\sqrt{11}}}}\\\\\qquad\star{\underline{\boxed{\sf{\red{b = 4\sqrt{11}}}}}}\end{gathered}[/tex]

Hence, the value of x is 411.

[tex]\rule{300}{2.5}[/tex]

ACCESS MORE