What is the value of tan(alpha), if CH=3, BH=6.4

Answer:
Step-by-step explanation:
The triangles ACH and CBH are similar by AA.
According to similarity we have same ratio of corresponding sides:
So the value of the tan α is:
[tex]\\ \tt\longmapsto CH^2=AH(BH)[/tex]
[tex]\\ \tt\longmapsto 9=6.4AH[/tex]
[tex]\\ \tt\longmapsto AH=1.4[/tex]
So
[tex]\\ \tt\longmapsto tan\alpha=CH/AH[/tex]
[tex]\\ \tt\longmapsto tan\alpha =\dfrac{3}{1.4}[/tex]
[tex]\\ \tt\longmapsto tan\alpha=2.14[/tex]