[tex]\qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad \stackrel{\textit{constant of variation}}{y=\stackrel{\downarrow }{k}x~\hfill } \\\\ \textit{\underline{x} varies directly with }\underline{z^5}\qquad \qquad \stackrel{\textit{constant of variation}}{x=\stackrel{\downarrow }{k}z^5~\hfill } \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\stackrel{\begin{array}{llll} \textit{"y" directly}\\ \textit{proportional to }\sqrt{x} \end{array}}{y = k\sqrt{x}}\qquad \textit{we know that} \begin{cases} y = 56\\ x = 49 \end{cases}\implies 56=k\sqrt{49} \\\\\\ 56=7k\implies \cfrac{56}{7}=k\implies 8=k~\hfill \boxed{y=8\sqrt{x}} \\\\\\ \textit{when x = 81, what is "y"?}\hfill y=8\sqrt{81}\implies y=8(9)\implies y=72[/tex]