Respuesta :

Exterior angle theorem and properties of the isosceles triangles are used

prove the specified relations.

Correct responses:

9. ΔPAT ~ ΔPTB by AA similarity postulate

15. [tex]\overleftrightarrow{HM}[/tex]║[tex]\overleftrightarrow{JK}[/tex] by basic proportionality theorem

Detailed methods used to prove response

9. A two column proof is presented as follows;

Statement [tex]{}[/tex]                                     Reasons

1. ∠PTA = ∠B [tex]{}[/tex]                           1.  Given

2. ∠PAT = ∠ATB + ∠B  [tex]{}[/tex]           2.  Exterior angle of a triangle theorem

3. ∠BTP = ∠ATB + ∠PTA [tex]{}[/tex]        3   Angle addition postulate

4. ∠BTP = ∠ATP + ∠B [tex]{}[/tex]             4.  Substitution property of equality

5. ∠PAT = ∠BTP [tex]{}[/tex]                      5.  Substitution property

6. ΔPAT ~ ΔPTB [tex]{}[/tex]                      6. AA similarity postulate

The Angle-Angle, AA, similarity postulate states that two triangles are similar if two angles in one triangle are each equal to two angles in the other triangle.

15. A two column proof is presented as follows;

Statement                        [tex]{}[/tex]                         Reasons

[tex]\displaystyle 1. \hspace{0.3 cm} \frac{GJ}{HK} = \frac{GK}{GM}[/tex]                            [tex]{}[/tex]          1.  Given

2. ∠1 ≅ ∠G                          [tex]{}[/tex]                   2. Given

3. ΔKHG is an isosceles triangle[tex]{}[/tex]         3. Definition

4. HK = HG [tex]{}[/tex]                                            4. Legs of an isosceles triangle

[tex]\displaystyle 5. \hspace{0.3 cm} \frac{GJ}{HG} = \frac{GK}{GM}[/tex]              [tex]{}[/tex]                         5. Substitution property

6. [tex]\overleftrightarrow {HM}[/tex] ║ [tex]\overleftrightarrow{JK}[/tex]                      [tex]{}[/tex]                    6. BPT, Basic Proportionality Theorem

Basic Proportionality Theorem, BPT, states that if a line parallel to one of the sides of a triangle, intersects the other two sides, then the line divides the other two sides in the same proportion.

Learn more about basic proportionality theorem, AA similarity postulate here:

https://brainly.com/question/14417137

https://brainly.com/question/17003791

ACCESS MORE