The solution to the exponential inequality is x < -4.
The exponential inequality given in this problem is:
[tex]3\left(\frac{1}{4}\right)^{x + 1} < 192[/tex]
Then:
[tex]\left(\frac{1}{4}\right)^{x + 1} < \frac{192}{3}[/tex]
[tex]\left(\frac{1}{4}\right)^{x + 1} < 64[/tex]
[tex]\left(\frac{1}{4}\right)^{x + 1} < 4^3[/tex]
Applying the exponent property, we have that:
[tex]4^3 = \left(\frac{1}{4}\right)^{-3}[/tex]
Hence:
[tex]\left(\frac{1}{4}\right)^{x + 1} < \left(\frac{1}{4}\right)^{-3}[/tex]
[tex]x + 1 < -3[/tex]
[tex]x < -4[/tex]
The solution is is x < -4.
You can learn more about inequalities at https://brainly.com/question/18290022