The inverse of the function is given by:
[tex]w = \frac{82.9}{\sqrt[3]{d}}[/tex]
In this problem, the function is:
[tex]w(d) = \left(\frac{82.9}{d}\right)^3[/tex]
The output is w, input d, hence we exchange them, and isolate w.
[tex]d = \left(\frac{82.9}{w}\right)^3[/tex]
[tex]dw^3 = 82.9^3[/tex]
[tex]w^3 = \frac{82.9^3}{d}[/tex]
[tex]w = \sqrt[3]{\frac{82.9^3}{d}}[/tex]
[tex]w = \frac{82.9}{\sqrt[3]{d}}[/tex]
Considering a weight of 66 pounds, [tex]w = 66[/tex], hence the distance is:
[tex]dw^3 = 82.9^3[/tex]
[tex]d = \frac{82.9^3}{66^3}[/tex]
[tex]d = 1.98[/tex]
Considering a weight of 66 pounds, the distance is of 1.98 inches.
You can learn more about inverse functions at https://brainly.com/question/26131242