Respuesta :
Answer:
attachment
Step-by-step explanation:
see the attachment

Given that.
[tex]\displaystyle f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}}[/tex]
and,
[tex]\displaystyle g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}}[/tex]
To perform mathematical operations on f(x) and g(x), they should have the same denominator.
Multiplying & Dividing f(x) by e^2x,
[tex]\longrightarrow \: \displaystyle f(x)=\int {\dfrac{e {}^{2x} dx}{e^{3x}+8e^{x}+4e^{-x}}}[/tex]
Now,
[tex]\begin{gathered} \longrightarrow \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{e {}^{2x} dx}{e^{3x}+8e^{x}+4e^{-x}}} - \int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\ \\ \longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{(e {}^{2x} - 2) dx}{e^{3x}+8e^{x}+4e^{-x}}}\end{gathered}
[/tex]
Multiplying & Dividing by e^x,
[tex]\longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{ {e}^{x} (e {}^{2x} - 2) dx}{e^{4x}+8e^{2x}+4} }[/tex]
Let's assume t = e^x
Differentiating on both sides w.r.t x,
[tex]dx = \dfrac{dt}{e {}^{x} }[/tex]
Thus,
[tex]\longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{ {e}^{x} (t{}^{2} - 2)}{t^{4}+8t^{2}+4} } \times \dfrac{dt}{ {e}^{x} }[/tex]
Dividing Numerator and Denominator by t²,
[tex]\longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{ (1 - \dfrac{2}{ {t}^{2} } )dt}{t^{2}+8+ \dfrac{4}{ {t}^{2} } } }[/tex]
Consider t² + 8 + 4/t².
It can be rewritten as (t + 2/t)² + 4 = (t + 2/t)² + 2
[tex]\longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int \dfrac{ (1 - \dfrac{2}{ {t}^{2} } )dt}{(t + \dfrac{2}{t} ) {}^{2} + {2}^{2} }[/tex]
Here,
If y = t + 2/t and differentiating w.r.t t,
[tex]\implies dy = ( 1 - \dfrac{2}{t {}^{2} } )[/tex]
Therefore,
[tex]\longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg)=\int \dfrac{dy}{ {y}^{2} + {2}^{2} }[/tex]
Of the form,
[tex]\boxed{ \boxed{ \sf \displaystyle \int \dfrac{dx}{ {x}^{2} + {a}^{2} } = \dfrac{1}{a}tan {}^{ - 1}( \dfrac{x}{a} ) }} [/tex]
Further,
[tex]\begin{gathered} \longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg) = \dfrac{1}{2} {tan}^{ - 1} \bigg( \dfrac{y}{2} \bigg) \\ \\ \longrightarrow \ \: \displaystyle \int \bigg( f(x) - 2g(x) \bigg) = \dfrac{1}{2} {tan}^{ - 1} \bigg( \dfrac{t {}^{2} + 2}{2t} \bigg) \\ \\ \longrightarrow \ \boxed{ \boxed{\displaystyle \int \bigg( f(x) - 2g(x) \bigg) = \dfrac{1}{2} {tan}^{ - 1} \bigg( \dfrac{ {e}^{2x} + 2 }{2 {e}^{x} } \bigg)}}\end{gathered} [/tex]