The perpendicular bisector theorem gives the statements that ensures
that [tex]\overleftrightarrow{FG}[/tex] and [tex]\overleftrightarrow{AB}[/tex] are perpendicular.
The two statements if true that guarantee [tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex] are;
Reasons:
The given diagram is the construction of the line [tex]\mathbf{\overleftrightarrow{FG}}[/tex] perpendicular to line [tex]\mathbf{\overleftrightarrow{AB}}[/tex].
Required:
The two statements that guarantee that [tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex].
Solution:
From the point C arcs E and D are drawn to cross line [tex]\overleftrightarrow{AB}[/tex], therefore;
[tex]\overline{CE} = \mathbf{\overline{CD}}[/tex] arcs drawn from the same radius.
[tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex], given.
Therefore;
[tex]\overline{DF} = \overline{EF}[/tex] by perpendicular bisector theorem.
Learn more about the perpendicular bisector theorem here:
https://brainly.com/question/11357763