Respuesta :

The perpendicular bisector theorem gives the statements that ensures

that [tex]\overleftrightarrow{FG}[/tex] and [tex]\overleftrightarrow{AB}[/tex] are perpendicular.

The two statements if true that guarantee  [tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex] are;

  • [tex]\overline{CE} = \overline{CD}[/tex]
  • [tex]\overline{DF} = \overline{EF}[/tex]

Reasons:

The given diagram is the construction of the line [tex]\mathbf{\overleftrightarrow{FG}}[/tex] perpendicular to line [tex]\mathbf{\overleftrightarrow{AB}}[/tex].

Required:

The two statements that guarantee that  [tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex].

Solution:

From the point C arcs E and D are drawn to cross line [tex]\overleftrightarrow{AB}[/tex], therefore;

[tex]\overline{CE} = \mathbf{\overline{CD}}[/tex] arcs drawn from the same radius.

[tex]\overleftrightarrow{FG}[/tex] is perpendicular to line [tex]\overleftrightarrow{AB}[/tex], given.

Therefore;

[tex]\overline{DF} = \overline{EF}[/tex]  by perpendicular bisector theorem.

Learn more about the perpendicular bisector theorem here:

https://brainly.com/question/11357763