please help ! 20 pts please
![please help 20 pts please class=](https://us-static.z-dn.net/files/d54/10b59c5ba36114702d1bddd6cacfcc16.jpeg)
The given ratios expresses the number of time a value is larger or smaller
than another value.
The correct responses are;
Reasons:
3. Given that the perimeter of the rectangle = 72
The ratio of the lengths of the sides = 1:2
Let a and b represent the sides, we have;
2·a + 2·b = 72
[tex]\displaystyle \frac{a}{b} = \mathbf{\frac{1}{2}}[/tex]
Which gives;
2·a = b
2·a + 2·(2·a) = 72
6·a = 72
a = 72 ÷ 6 = 12
b = 2·a = 2 × 12 = 24
The lengths of the sides are; (B) 12 and 24
4. Extended ratio = 2:3:7
The perimeter = 36
The lengths of the sides are;
[tex]\displaystyle \frac{2}{2 + 3 + 7} \times 36 = \mathbf{6}[/tex]
[tex]\displaystyle \frac{3}{2 + 3 + 7} \times 36 = \mathbf{9}[/tex]
[tex]\displaystyle \frac{7}{2 + 3 + 7} \times 36 = \mathbf{21}[/tex]
The lengths are; (D) 6, 9, 21
5. The given equation is presented as follows;
[tex]\displaystyle \frac{5}{x + 7} = \mathbf{\frac{3}{x + 2}}[/tex]
5 × (x + 2) = 3 × (x + 7)
5·x + 10 = 3·x + 21
5·x - 3·x = 21 - 10
2·x = 11
[tex]\displaystyle x = \mathbf{ \frac{11}{2}}[/tex]
The correct option is; [tex]\displaystyle \underline{(E) \ \frac{11}{2}}[/tex]
6. The width to length ratio is [tex]\displaystyle \mathbf{\frac{2.5}{7.0}}[/tex]
The simplified ratio is therefore;
[tex]\displaystyle \frac{2.5}{7.0} = \frac{2 \times 2.5}{2 \times 7.0} = \mathbf{\frac{5}{14}}[/tex]
The correct option is (E) [tex]\displaystyle \underline{(E) \ \frac{5}{14}}[/tex]
7. The given ratio of the lengths is 3:1
Therefore;
[tex]\overline{BC}[/tex]:[tex]\overline{EF}[/tex] = 3:1
Which gives;
[tex]\displaystyle \mathbf{\frac{\overline{BC}}{\overline{EF}}} = \frac{3}{1}[/tex]
[tex]\overline{BC}[/tex] = 18
Therefore;
[tex]\displaystyle \frac{18}{\overline{EF}} = \frac{3}{1}[/tex]
18 × 1 = 3 × [tex]\overline{EF}[/tex]
[tex]\displaystyle \overline{EF} = \frac{18 \times 1}{3} = 6[/tex]
[tex]\overline{EF}[/tex] = 6
By Pythagorean theorem, we have;
[tex]\overline{DF}[/tex]² = [tex]\mathbf{\overline{DE}}[/tex]² + [tex]\mathbf{\overline{EF}}[/tex]²
Which gives;
[tex]\overline{DF}[/tex]² = 3² + 6² = 45
[tex]\overline{DF}[/tex] = √(45) = 3·√5
Using the given ratio, we have;
[tex]\overline{AC}[/tex] = 3 × [tex]\mathbf{\overline{DF}}[/tex]
Which gives;
[tex]\overline{AC}[/tex] = 3 × 3·√5 = 9·√5
[tex]\overline{AC}[/tex] = 9·√5
The correct option is; (B) [tex]\overline{EF}[/tex] = 6, [tex]\overline{AC}[/tex] = 9·√5
8. EF = 1, AB = 2
CD = 2, CE = 4
Therefore;
[tex]\displaystyle \mathbf{\frac{EF}{AB}} =\frac{1}{2}[/tex]
[tex]\displaystyle \mathbf{\frac{CD}{CE}} =\frac{2}{4} = \frac{1}{2}[/tex]
Which gives;
[tex]\displaystyle \frac{EF}{AB} =\displaystyle \mathbf{\frac{CD}{CE}}[/tex]
(C) The values are equal
9. AC = 6, BE = 8
DF = 3, BD = 6
Column A
[tex]\displaystyle \frac{AC}{BE} =\displaystyle \mathbf{\frac{6}{8}} = \frac{3}{4}[/tex]
Column B
[tex]\displaystyle \frac{DF}{BD} =\displaystyle \mathbf{\frac{3}{6}} = \frac{1}{2}[/tex]
[tex]\displaystyle \frac{3}{4} > \mathbf{\frac{1}{2}}[/tex]
Therefore;
Column A is greater than column B
(A) The value in column A is greater
Learn more about ratios here:
https://brainly.com/question/2774839