Respuesta :

Answer:

3[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying the radicals

[tex]\sqrt{125}[/tex]

= [tex]\sqrt{25(5)}[/tex]

= [tex]\sqrt{25}[/tex] × [tex]\sqrt{5}[/tex] = 5[tex]\sqrt{5}[/tex]

[tex]\sqrt{45}[/tex]

= [tex]\sqrt{9(5)}[/tex]

= [tex]\sqrt{9}[/tex] × [tex]\sqrt{5}[/tex] = 3[tex]\sqrt{5}[/tex]

Then

[tex]\sqrt{125}[/tex] - [tex]\sqrt{45}[/tex] + [tex]\sqrt{5}[/tex]

= 5[tex]\sqrt{5}[/tex] - 3[tex]\sqrt{5}[/tex] + [tex]\sqrt{5}[/tex] ← collect like terms

= 3[tex]\sqrt{5}[/tex]

ACCESS MORE