Respuesta :

Answer:

[tex]12[/tex]

Step-by-step explanation:

[tex]\sqrt{12} \times\sqrt{12}[/tex]

[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}\sqrt{a}=a,\:\quad \:a\ge 0[/tex]

[tex]\sqrt{12}\sqrt{12}=12[/tex]

[tex]=12[/tex]

The value of [tex]\sqrt{12} * \sqrt{12}[/tex] is equal to 12

To solve this problem, we have to convert the surds to radicals and then use the law of indices on this.

[tex]\sqrt{12} * \sqrt{12}= 12^\frac{1}{2} * 12^\frac{1}{2}[/tex]

Addition Law of Indices

This law is given as

[tex]a^m+a^n = a^(^m^+^n^)[/tex]

let's substitute the values in this question.

[tex]12^\frac{1}{2}*12^\frac{1}{2}[/tex]

Let's apply the law and solve the radical

[tex]12^\frac{1}{2}*12^\frac{1}{2} = 12^(^\frac{1}{2}^+^\frac{1}{2}^)\\[/tex]

Solve the fractions

[tex]\frac{1}{2}+\frac{1}{2}=1[/tex]

substitute the values and solve

[tex]12^\frac{1}{1}=12[/tex]

from the calculations above, the value of the radical is 12.

Learn more on laws of indices here;

https://brainly.com/question/10339517