Respuesta :
Answer:
[tex]12[/tex]
Step-by-step explanation:
[tex]\sqrt{12} \times\sqrt{12}[/tex]
[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}\sqrt{a}=a,\:\quad \:a\ge 0[/tex]
[tex]\sqrt{12}\sqrt{12}=12[/tex]
[tex]=12[/tex]
The value of [tex]\sqrt{12} * \sqrt{12}[/tex] is equal to 12
To solve this problem, we have to convert the surds to radicals and then use the law of indices on this.
[tex]\sqrt{12} * \sqrt{12}= 12^\frac{1}{2} * 12^\frac{1}{2}[/tex]
Addition Law of Indices
This law is given as
[tex]a^m+a^n = a^(^m^+^n^)[/tex]
let's substitute the values in this question.
[tex]12^\frac{1}{2}*12^\frac{1}{2}[/tex]
Let's apply the law and solve the radical
[tex]12^\frac{1}{2}*12^\frac{1}{2} = 12^(^\frac{1}{2}^+^\frac{1}{2}^)\\[/tex]
Solve the fractions
[tex]\frac{1}{2}+\frac{1}{2}=1[/tex]
substitute the values and solve
[tex]12^\frac{1}{1}=12[/tex]
from the calculations above, the value of the radical is 12.
Learn more on laws of indices here;
https://brainly.com/question/10339517