Respuesta :

Answer:

[tex] \dfrac{4m^2n}{3p} [/tex]

second choice

Step-by-step explanation:

Deal with the numbers first, then with each set of equal variables.

Use the rule a^m/a^n = a^(m - n)

4/3 cannot be reduced, so the number part remains 4/3.

m^4/m^2 = m^2

n^3/n^2 = n^1 = n

p^3/p^4 = p^-1 = 1/p

Now put it all together:

[tex] \dfrac{4m^2n}{3p} [/tex]

second choice

[tex]\\ \sf{:}\longrightarrow \dfrac{4m^4n^3p^3}{3m^2n^2p^4}[/tex]

  • a^m/a^n=a^m-n

[tex]\\ \sf{:}\longrightarrow \dfrac{4}{3}m^{4-2}n^{3-2}p^{3-4}[/tex]

[tex]\\ \sf{:}\longrightarrow \dfrac{4m^2np^{-1}}3}[/tex]

[tex]\\ \sf{:}\longrightarrow \dfrac{4m^2n}{3p}[/tex]