Answer: [tex]2c^9[/tex]
Step-by-step explanation:
I'm assuming this is the expression: [tex]6a^3b^2c^{10}+\:20c^{10}\:-\:8a^3b^2c^9[/tex]
[tex]\mathrm{Factor\:}6a^3b^2c^{10}[/tex] (Expand using 2's and 3's as they are the common factor in all terms)
[tex]2\cdot \:3\cdot \:a\cdot \:a\cdot \:a\cdot \:b\cdot \:b\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c[/tex]
[tex]\mathrm{Factor\:}20c^{10}[/tex] (5 needed to expand the coefficient)
[tex]2\cdot \:2\cdot \:5\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c[/tex]
[tex]\mathrm{Factor\:}8a^3b^2c^9[/tex]
[tex]2\cdot \:2\cdot \:2\cdot \:a\cdot \:a\cdot \:a\cdot \:b\cdot \:b\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c[/tex]
Common factors (terms that are in all expressions):
[tex]2\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c\cdot \:c[/tex]
Simplify:
[tex]2c^9[/tex]