Given the curve [tex]\displaystyle \large{y=e^{-x}\sin x \ \ (x\geq 0)[/tex] let the area enclosed by the curve and the x-axis (above the x-axis) be S0, S1, S2, ... , Sn, ... in order from y-axis. Find [tex]\displaystyle \large{ \lim_{n \to \infty} \sum_{k=0}^{n} S_k}[/tex]

Respuesta :

The given curve crosses the x-axis whenever x is a multiple of π, and it lies above the x-axis between consecutive even and odd multiples of π. So the regions with area S₀, S₁, S₂, ... are the sets

[tex]R_0 = \left\{(x, y) : 0 \le x \le \pi \text{ and } 0 \le y \le e^{-x}\sin(x)\right\}[/tex]

[tex]R_1 = \left\{(x, y) : 2\pi \le x \le 3\pi \text{ and } 0 \le y \le e^{-x}\sin(x)\right\}[/tex]

[tex]R_2 = \left\{(x, y) : 4\pi \le x \le 5\pi \text{ and } 0 \le y \le e^{-x}\sin(x)\right\}[/tex]

and so on, with

[tex]R_k = \left\{(x, y) : 2k\pi \le x \le (2k+1)\pi \text{ and } 0 \le y \le e^{-x}\sin(x)\right\}[/tex]

for natural number k.

The areas themselves are then given by the integral

[tex]S_k = \displaystyle \int_{2k\pi}^{(2k+1)\pi} \int_0^{e^{-x}\sin(x)} dy \, dx = \int_{2k\pi}^{(2k+1)\pi} e^{-x}\sin(x) \, dx[/tex]

Integrate by parts twice. Take

[tex]u = e^{-x} \implies du = -e^{-x} \, dx[/tex]

[tex]dv = \sin(x) \, dx \implies v = -\cos(x)[/tex]

so that

[tex]\displaystyle \int e^{-x}\sin(x) \, dx = -e^{-x}\cos(x) - \int e^{-x}\cos(x) \, dx[/tex]

then

[tex]u = e^{-x} \implies du = -e^{-x} \, dx[/tex]

[tex]dv = \cos(x) \, dx \implies v = \sin(x)[/tex]

so that

[tex]\displaystyle \int e^{-x}\cos(x) \, dx = e^{-x}\sin(x) + \int e^{-x}\sin(x) \, dx[/tex]

Overall, we find

[tex]\displaystyle \int e^{-x}\sin(x) \, dx = -e^{-x}\cos(x) - e^{-x}\sin(x) - \int e^{-x}\sin(x) \, dx[/tex]

or

[tex]\displaystyle \int e^{-x}\sin(x) \, dx = -\frac12 e^{-x} (\cos(x)+\sin(x)) + C[/tex]

Using the antiderivative and the fundamental theorem of calculus, we compute the k-th area to be

[tex]\displaystyle S_k = -\frac12 e^{-(2k+1)\pi} (\cos((2k+1)\pi)+\sin((2k+1)\pi)) + \frac12 e^{-2k\pi} (\cos(2k\pi)+\sin(2k\pi))[/tex]

[tex]\displaystyle S_k = \frac12 e^{-2k\pi} \cos(2k\pi) \left(e^{-\pi} + 1\right)[/tex]

[tex]\displaystyle S_k = \frac{e^{-\pi}+1}2 e^{-2k\pi}[/tex]

Since [tex]\left|e^{-2\pi}\right|<1[/tex], the sum we want is a convergent geometric sum. As n goes to ∞, we have

[tex]\displaystyle \lim_{n\to\infty} \sum_{k=0}^n S_k = \frac{e^{-\pi}+1}2 \cdot \frac1{1 - e^{-2\pi}} = \boxed{\frac{e^\pi+1}{4\sinh(\pi)}}[/tex]