Here's the question.
![Heres the question class=](https://us-static.z-dn.net/files/d06/20b094e6c9b0663e7ddc9d12026d1324.jpg)
Answer:
The value of T₂₀ - T₁₅ is -20.
Step-by-step explanation:
Given :
To Find :
Using Formula :
General term of an A.P.
[tex]\star{\small{\underline{\boxed{\sf{\red{ T_n = a + (n - 1)d}}}}}}[/tex]
Solution :
Firstly finding the A.P of T₂₀ by substituting the values in the formula :
[tex]{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{20} = a + (20 - 1) d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{20} = a + (19)d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{20} = a + 19 \times d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{20} = a + 19d}}}[/tex]
[tex]{\star \: {\underline{\boxed{\sf{\pink{ T_{20} = a + 19d}}}}}}[/tex]
Hence, the value of T₂₀ is a + 19d.
[tex] \rule{190}1[/tex]
Secondly, finding the A.P of T₁₅ by substituting the values in the formula :
[tex]{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{15}= a + (15 - 1) d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{15}= a + (14) d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{15}= a + 14 \times d}}}[/tex]
[tex]{\dashrightarrow{\sf{ T_{15}= a + 14d}}}[/tex]
[tex]{\star{\underline{\boxed{\sf \pink{ T_{15}= a + 14d}}}}}[/tex]
Hence, the value of T₁₅ is a + 14d
[tex] \rule{190}1[/tex]
Now, finding the difference between T₂₀ - T₁₅ :
[tex]{\dashrightarrow{\pmb{\sf{T_{20} - T_{15}}}}}[/tex]
[tex]{\dashrightarrow{\sf{(a + 19d) - (a + 14d)}}}[/tex]
[tex]{\dashrightarrow{\sf{a + 19d - a - 14d}}}[/tex]
[tex]{\dashrightarrow{\sf{a - a + 19d - 14d}}}[/tex]
[tex]{\dashrightarrow{\sf{0+ 19d - 14d}}}[/tex]
[tex]{\dashrightarrow{\sf{19d - 14d}}}[/tex]
[tex]{\dashrightarrow{\sf{5 \times - 4}}}[/tex]
[tex]{\dashrightarrow{\sf{ - 20}}}[/tex]
[tex]{\star \: \underline{\boxed{\sf{\pink{T_{20} - T_{15} = - 20}}}}}[/tex]
Hence, the value of T₂₀ - T₁₅ is -20.
[tex]\underline{\rule{220pt}{3.5pt}}[/tex]