Respuesta :

Answer:

The value of T₂₀ - T₁₅ is -20.

Step-by-step explanation:

Given :

  • >> If for an A.P, d = -4

To Find :

  • >> T₂₀ - T₁₅

Using Formula :

General term of an A.P.

[tex]\star{\small{\underline{\boxed{\sf{\red{ T_n = a + (n - 1)d}}}}}}[/tex]

  • >> Tₙ = nᵗʰ term
  • >> a = first term
  • >> n = no. of terms
  • >> d = common difference

Solution :

Firstly finding the A.P of T₂₀ by substituting the values in the formula :

[tex]{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{20} = a + (20 - 1) d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{20} = a + (19)d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{20} = a + 19 \times d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{20} = a + 19d}}}[/tex]

[tex]{\star \: {\underline{\boxed{\sf{\pink{ T_{20} = a + 19d}}}}}}[/tex]

Hence, the value of T₂₀ is a + 19d.

[tex] \rule{190}1[/tex]

Secondly, finding the A.P of T₁₅ by substituting the values in the formula :

[tex]{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{15}= a + (15 - 1) d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{15}= a + (14) d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{15}= a + 14 \times d}}}[/tex]

[tex]{\dashrightarrow{\sf{ T_{15}= a + 14d}}}[/tex]

[tex]{\star{\underline{\boxed{\sf \pink{ T_{15}= a + 14d}}}}}[/tex]

Hence, the value of T₁₅ is a + 14d

[tex] \rule{190}1[/tex]

Now, finding the difference between T₂₀ - T₁₅ :

[tex]{\dashrightarrow{\pmb{\sf{T_{20} - T_{15}}}}}[/tex]

[tex]{\dashrightarrow{\sf{(a + 19d) - (a + 14d)}}}[/tex]

[tex]{\dashrightarrow{\sf{a + 19d - a - 14d}}}[/tex]

[tex]{\dashrightarrow{\sf{a - a + 19d - 14d}}}[/tex]

[tex]{\dashrightarrow{\sf{0+ 19d - 14d}}}[/tex]

[tex]{\dashrightarrow{\sf{19d - 14d}}}[/tex]

[tex]{\dashrightarrow{\sf{5 \times - 4}}}[/tex]

[tex]{\dashrightarrow{\sf{ - 20}}}[/tex]

[tex]{\star \: \underline{\boxed{\sf{\pink{T_{20} - T_{15} = - 20}}}}}[/tex]

Hence, the value of T₂₀ - T₁₅ is -20.

[tex]\underline{\rule{220pt}{3.5pt}}[/tex]

ACCESS MORE