Answer:
[tex]y = - \frac{7}{6} x + 6 \frac{1}{3} [/tex]
Step-by-step explanation:
Slope-intercept form
y= mx +c, where m is the slope and c is the y-intercept.
-6x +7y= -62
Rewriting this equation into the slope-intercept form:
7y= 6x -62
[tex]y = \frac{6}{7} x - \frac{62}{7} [/tex]
The product of the slope of 2 perpendicular lines is -1.
Let the slope of the unknown line be m.
[tex]m( \frac{6}{7} ) = - 1[/tex]
[tex]m = - 1 \div \frac{6}{7} [/tex]
[tex]m = - \frac{7}{6} [/tex]
Substitute the value of m into the equation:
[tex]y = - \frac{7}{6} x + c[/tex]
To find the value of c, substitute a pair of coordinates into the equation.
When x= 8, y= -3,
[tex] - 3 = - \frac{ 7}{6} (8) + c[/tex]
[tex] - 3 = - \frac{28}{3} + c[/tex]
[tex]c = \frac{28}{3} - 3[/tex]
[tex]c = \frac{19}{3} [/tex]
[tex]c = 6 \frac{1}{3} [/tex]
Thus, the equation of the line is [tex]y = - \frac{7}{6} x + 6 \frac{1}{3} [/tex].