Respuesta :
Check the picture below.
let's change the decimal values to fractions, say 0.1 to 1/10 and 0.6 to 6/10 = 3/5, so then
[tex]\textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{-\frac{1}{10}}x^2\stackrel{\stackrel{b}{\downarrow }}{+\frac{3}{5}}x\stackrel{\stackrel{c}{\downarrow }}{+8} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right)[/tex]
[tex]\left(-\cfrac{~~ \frac{3}{5}~~}{2\frac{-1}{10}}~~,~~8-\cfrac{\left( \frac{3}{5} \right)^2}{4\left(-\frac{1}{10} \right)} \right)\implies \left(\cfrac{~~ \frac{3}{5}~~}{\frac{1}{5}}~~,~~8+\cfrac{\frac{9}{25}}{\frac{2}{5}} \right)[/tex]
[tex]\left( \cfrac{3}{5}\cdot \cfrac{5}{1}~~,~~8+\left[ \cfrac{9}{25}\cdot \cfrac{5}{2} \right] \right)\implies \left(3~~,~~8+\cfrac{9}{10} \right)\implies \stackrel{\stackrel{\textit{maximum height}}{\qquad \downarrow }}{\underset{\underset{\textit{horizontal distance}}{\uparrow \qquad \quad }}{\left( 3~~,~~8\frac{9}{10} \right)}}[/tex]
![Ver imagen jdoe0001](https://us-static.z-dn.net/files/d3b/7ba39e07e2bdcb73176e49cb74b3e9c9.jpeg)