Respuesta :

The domain of an expression is the set of input values the expression can take

  • The domain of the expression is [tex]y \ne 1.5x[/tex]
  • The domain of the simplified expression is [tex]y \ne -1.5x[/tex]

(a) The domain of the expression

The expression is given as:

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)}[/tex]

Set the denominator to 0, to determine the domain

[tex](4y^2 - 9x^2) = 0[/tex]

Remove brackets

[tex]4y^2 - 9x^2 = 0[/tex]

Add 9x^2 to both sides

[tex]4y^2 = 9x^2[/tex]

Divide both sides by 4

[tex]y^2 = 2.25x^2[/tex]

Take positive square roots of both sides

[tex]y = 1.5x[/tex]

Hence, the domain of the expression is [tex]y \ne 1.5x[/tex]

(b) The domain of the simplified expression

The expression is given as:

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)}[/tex]

Rewrite as:

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{(9x^2 - 12xy+ 4y^2 )}{((2y)^2 - (3x)^2)}[/tex]

Expand the numerator

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{(9x^2 - 6xy - 6xy+ 4y^2 )}{((2y)^2 - (3x)^2)}[/tex]

Factorize the numerator

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{3x(3x - 2y) - 2y(3x- 2y )}{((2y)^2 - (3x)^2)}[/tex]

Factor out 3x - 2y

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{(3x - 2y)(3x- 2y )}{((2y)^2 - (3x)^2)}[/tex]

Express the denominator as a difference of two squares

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{(3x - 2y)(3x- 2y )}{(2y - 3x)(2y + 3x))}[/tex]

Rewrite as:

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{-(2y - 3x)(3x- 2y )}{(2y - 3x)(2y + 3x))}[/tex]

Cancel out the common term

[tex]\frac{(9x^2 + 4y^2 - 12xy)}{(4y^2 - 9x^2)} = \frac{-(3x- 2y )}{(2y + 3x)}[/tex]

Set the denominator to 0, to determine the domain

[tex]2y + 3x= 0[/tex]

Subtract 3x from both sides

[tex]2y= -3x[/tex]

Divide both sides by 2

[tex]y= -1.5x[/tex]

Hence, the domain of the simplified expression is [tex]y \ne -1.5x[/tex]

Read more about domain at:

https://brainly.com/question/10197594

ACCESS MORE