Respuesta :

[tex]\dfrac 28 x + \dfrac 38 (x-1) = 4\\\\\implies \dfrac 18(2x + 3x -3) = 4\\\\\implies 5x -3 = 32\\\\\implies 5x = 32 +3 \\\\\implies 5x = 35\\\\\implies x = \dfrac{35}5\\\\\implies x = 7[/tex]

Answer:

The value of x is 7.

Step-by-step explanation:

Question :

[tex]{\implies{\sf{\dfrac{2}{8} x + \dfrac{3}{8}(x - 1) = 4}}}[/tex]

Solution :

[tex]{\implies{\sf{\dfrac{2}{8} x + \dfrac{3}{8}(x - 1) = 4}}}[/tex]

[tex]{\implies{\sf{\dfrac{2}{8} \times x + \dfrac{3}{8}(x - 1) = 4}}}[/tex]

[tex]{\implies{\sf{\dfrac{2 \times x}{8} + \dfrac{3(x - 1)}{8} = 4}}}[/tex]

[tex]{\implies{\sf{\dfrac{2x}{8} + \dfrac{3x - 3}{8} = 4}}}[/tex]

[tex]{\implies{\sf{\dfrac{2x + 3x - 3}{8} = 4}}}[/tex]

[tex]{\implies{\sf{\dfrac{5x - 3}{8} = 4}}}[/tex]

[tex]{\implies{\sf{{5x - 3} = 4 \times 8}}}[/tex]

[tex]{\implies{\sf{{5x - 3} =32}}}[/tex]

[tex]{\implies{\sf{5x = 32 + 3}}}[/tex]

[tex]{\implies{\sf{5x = 35}}}[/tex]

[tex]{\implies{\sf{x = 35 \div 5}}}[/tex]

[tex]{\implies{\sf{x = \dfrac{35}{5}}}}[/tex]

[tex]{\implies{\sf{x = \cancel{\dfrac{35}{5}}}}}[/tex]

[tex]{\implies{\sf{x = 7}}}[/tex]

[tex]\star{\underline{\boxed{\sf{\pink{x = 7}}}}}[/tex]

Hence, the value of x is 7.

[tex]\rule{300}{1.5}[/tex]