Respuesta :
Answer:
[tex]\huge\boxed{\sf Solution\ Set = \{5,-4\}}[/tex]
Step-by-step explanation:
Given equation is:
[tex]x^2-x-20=0[/tex]
Factoring it by mid-term break method.
+4x × -5x = -20x² (multiplication of side terms)
-5x + 4x = -x (Middle term)
Hence, we can split -x into -5 and +4
[tex]x^2-5x+4x-20=0\\\\x(x-5)+4(x-5)= 0\\\\Take \ (x-5)\ common\\\\(x-5)(x+4)=0\\\\[/tex]
Either:
x - 5 = 0 OR x + 4 = 0
x = 5 OR x = -4
Solution Set = {5,-4}
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807
[tex]Hiya![/tex]
I know, this is a late questions.. but, why not. answer it.
Here's a explanation!
[tex]x^2-x-20-0[/tex]
Step 1: factor left side of equation:
[tex](x+4)(x-5)=0[/tex]
Step 2: Set the factors equal to 0
[tex]x+4=0[/tex]
OR:
[tex]x-5=0[/tex]
There's a another answer too.
[tex]x=-4[/tex]
OR:
[tex]x=5[/tex]
ANSWER:
[tex]x=-4[/tex]
OR:
[tex]x=5[/tex]
Hopefully, this helps you!!
[tex]Sokka[/tex]