Respuesta :

Given that :

tan θ + sin θ = a → → →eqn(i)

On squaring both sides then

⇛(tan θ + sin θ)² = a²

⇛tan² θ + 2 tan θ sin θ + sin² θ = a²→ → →eqn(ii)

And

tan θ - sin θ = β → → →eqn(iii)

On squaring both sides then

⇛(tan θ - sin θ)² = β²

⇛tan² θ - 2 tan θ sin θ + sin² θ =β²→ → →eqn(iv)

On Subtracting eqn(iv) from eqn(iii)

⇛(tan² θ + 2 tan θ sin θ + sin² θ) -

(tan² θ - 2 tan θ sin θ + sin² θ) = a²- β²

⇛tan² θ + 2 tan θ sin θ + sin² θ -

tan² θ + 2 tan θ sin θ - sin² θ = a²- β²

⇛2 tan θ sin θ +2 tan θ sin θ = a²- β²

⇛4 tan θ sin θ = a²- β² → → →eqn(v)

Now

a = tan θ + sin θ

β = tan θ - sin θ

a β = (tan θ + sin θ)(tan θ - sin θ)

⇛a β = tan² θ - sin²θ

⇛a β = ( sin² θ/ cos² θ) - sin² θ

⇛a β = sin² θ{ (1/cos² θ)-1}

⇛a β = sin² θ{(1- cos² θ)/cos² θ}

⇛a β = sin² θ × sin² θ/ cos² θ

⇛a β = sin² θ tan² θ

⇛a β = ( sin θ tan θ)²

⇛tan θ sin θ = √(a β) → → → eqn(vi)

On Substituting this value in eqn(v)

from eqn(v)& eqn(vi)

⇛a²- β² = 4√(a β)

Hence, proved.

also read similar questions: Simplify the expression using trigonometric identities (csc θ – csc θ · cos^2 θ). options: A) sin^2 θ B) sin θ · tan θ C) sin^3 θ D) sin θ...

https://brainly.com/question/23898460?referrer

ACCESS MORE