Respuesta :

The equation that describes the zeroes of the graph of function[tex]f(x) = -x^5 + 9x^4-18x^3[/tex] is [tex]f(x) = -x^3(x - 3) (x-6)[/tex]

The function is given as:

[tex]f(x) = -x^5 + 9x^4-18x^3[/tex]

Factor out -x^3

[tex]f(x) = -x^3(x^2 - 9x+18)[/tex]

Expand the expression in the bracket

[tex]f(x) = -x^3(x^2 - 6x - 3x+18)[/tex]

Factorize the expression in the bracket

[tex]f(x) = -x^3(x(x - 6) - 3(x-6))[/tex]

Factor out x - 6

[tex]f(x) = -x^3((x - 3) (x-6))[/tex]

Rewrite the above equation as:

[tex]f(x) = -x^3(x - 3) (x-6)[/tex]

Hence, the equation that describes the zeroes of the graph of function[tex]f(x) = -x^5 + 9x^4-18x^3[/tex] is [tex]f(x) = -x^3(x - 3) (x-6)[/tex]

Read more about zeroes of functions at:

https://brainly.com/question/11514041

ACCESS MORE