Respuesta :

Answer:

First, we need to determine the slope of the line going through the two points. The slope can be found by using the formula:  

m

=

y

2

y

1

x

2

x

1

Where  

m

is the slope and (

x

1

,

y

1

) and (

x

2

,

y

2

) are the two points on the line.

Substituting the values from the points in the problem gives:

m

=

5

7

3

0

=

2

3

Now, we can use the point-slope formula to find an equation going through the two points. The point-slope formula states:  

(

y

y

1

)

=

m

(

x

x

1

)

Where  

m

is the slope and  

(

x

1

y

1

)

is a point the line passes through.

Substituting the slope we calculated and the values from the first point gives:

(

y

7

)

=

2

3

(

x

0

)

We can also substitute the slope we calculated and the values from the second point giving:

(

y

5

)

=

2

3

(

x

3

)

We can also solve the first equation for  

y

to transform the equation to slope-intercept form. The slope-intercept form of a linear equation is:  

y

=

m

x

+

b

Where  

m

is the slope and  

b

is the y-intercept value.

y

7

=

2

3

x

y

7

+

7

=

2

3

x

+

7

y

0

=

2

3

x

+

7

y

=

2

3

x

+

7

ACCESS MORE