Respuesta :

Answer:

See below (along with attached triangle)

Step-by-step explanation:

We aren't given the hypotenuse, so let's solve that first:

[tex]a^2+b^2=c^2\\21^2+28^2=c^2\\441+784=c^2\\1225=c^2\\35=c[/tex]

Now we can write the trigonometric functions:

[tex]sin\theta=\frac{opposite}{hypotenuse}=\frac{21}{35}=\frac{3}{5}[/tex]

[tex]cos\theta=\frac{adjacent}{hypotenuse}=\frac{28}{35}=\frac{4}{5}[/tex]

[tex]tan\theta=\frac{opposite}{adjacent}=\frac{21}{28}=\frac{3}{4}[/tex]

[tex]csc\theta=\frac{hypotenuse}{opposite}=\frac{35}{21}=\frac{5}{3}[/tex]

[tex]sec\theta=\frac{hypotenuse}{adjacent}=\frac{35}{28}=\frac{5}{4}[/tex]

[tex]cot\theta=\frac{adjacent}{opposite}=\frac{28}{21}=\frac{4}{3}[/tex]

I've attached a right triangle with the given information to help you visualize!

Ver imagen goddessboi

The six trigonometric functions for the right triangle are [tex]\sin \theta = \frac{3}{5}[/tex], [tex]\cos \theta = \frac{4}{5}[/tex], [tex]\tan \theta = \frac{3}{4}[/tex], [tex]\cot \theta = \frac{4}{3}[/tex], [tex]\sec \theta = \frac{5}{4}[/tex], [tex]\csc \theta = \frac{5}{3}[/tex].

Right triangles are modelled after Pythagorean theorem, which states that:

[tex]r^{2} = x^{2}+y^{2}[/tex] (1)

Where:

  • [tex]x[/tex] - Adjacent leg.
  • [tex]y[/tex] - Opposite leg.
  • [tex]r[/tex] - Hypotenuse.

And trigonometric functions are defined below:

Sine

[tex]\sin \theta = \frac{y}{r}[/tex]

Cosine

[tex]\cos \theta = \frac{x}{r}[/tex]

Tangent

[tex]\tan \theta = \frac{y}{x}[/tex]

Cotangent

[tex]\cot \theta = \frac{x}{y}[/tex]

Secant

[tex]\sec \theta = \frac{r}{x}[/tex]

Cosecant

[tex]\csc \theta = \frac{r}{y}[/tex]

If we know that [tex]x = 28[/tex] and [tex]y = 21[/tex], then the six trigonometric functions are:

[tex]r = \sqrt{28^{2}+21^{2}}[/tex]

[tex]r = 35[/tex]

[tex]\sin \theta = \frac{21}{35} = \frac{3}{5}[/tex], [tex]\cos \theta = \frac{28}{35} = \frac{4}{5}[/tex], [tex]\tan \theta = \frac{3}{4}[/tex], [tex]\cot \theta = \frac{4}{3}[/tex], [tex]\sec \theta = \frac{5}{4}[/tex], [tex]\csc \theta = \frac{5}{3}[/tex]

The six trigonometric functions for the right triangle are [tex]\sin \theta = \frac{3}{5}[/tex], [tex]\cos \theta = \frac{4}{5}[/tex], [tex]\tan \theta = \frac{3}{4}[/tex], [tex]\cot \theta = \frac{4}{3}[/tex], [tex]\sec \theta = \frac{5}{4}[/tex], [tex]\csc \theta = \frac{5}{3}[/tex].

To learn more on trigonometric functions, we kindly invite to check this verified question: https://brainly.com/question/20594759

ACCESS MORE