Question:-
[tex]-n-4<3[/tex]
This is a inequality.We need to solve this inequality.
Solution:-
[tex]\sf \longmapsto-n-4<3[/tex]
Firstly,Add 4 to two sides :-
[tex]\sf \longmapsto - n - 4+4<3+4[/tex]
On Simplification:-
As (-) and (+) equals to (-),It would be 4-4.Answer is 0.
[tex]\sf \longmapsto - n - 0 < 7[/tex]
[tex]\sf \longmapsto \: - n < 7[/tex]
Then, Divide both sides by -1 :·-
[tex]\sf \longmapsto \: \dfrac{ - n}{ - 1} < \dfrac{7}{ - 1} [/tex]
On Simplification :-
If the denominator is 1, it means that there is no value of 1 in the fraction.
[tex]\sf \longmapsto \: \dfrac{ \cancel- n}{ \cancel- 1} < \dfrac{ \cancel7}{ - \cancel1} [/tex]
[tex]\sf \longmapsto \: n > -7 [/tex]
______________________________________
Henceforth, the value of the inequality is :-
[tex] \boxed{\tt \: n > - 7}[/tex]
______________________________________
I hope this helps!
Please let me know if you have any questions.
~MisterBrian