Respuesta :

Answer: What's the equation of the line that's a perpendicular bisector of the segment connecting A (–2, 8) and B (–4, 2)? Question 12 options:

Step-by-step explanation:

Answer:

y = - [tex]\frac{1}{3}[/tex] x + 4

Step-by-step explanation:

The perpendicular bisector bisects AB at right angles

The midpoint of AB using the midpoint formula

[tex]M_{AB}[/tex] = ( [tex]\frac{x_{1+x_{2} } }{2}[/tex] , [tex]\frac{y_{1}+y_{2} }{2}[/tex] )

with (x₁,y₁ ) = A (- 2, 8 ) and (x₂, y₂ ) = B (- 4, 2 )

[tex]M_{AB}[/tex] = ( [tex]\frac{-2-4}{2}[/tex] , [tex]\frac{8+2}{2}[/tex] ) = ( [tex]\frac{-6}{2}[/tex] , [tex]\frac{10}{2}[/tex] ) = (- 3, 5 )

Calculate the slope m of AB using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex] = [tex]\frac{2-8}{-4-(-2)}[/tex] = [tex]\frac{-6}{-4+2}[/tex] = [tex]\frac{-6}{-2}[/tex] = 3

Given a line with slope m then the slope of a line perpendicular to it is

[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{3}[/tex]

The perpendicular bisector passes through (- 3, 5 ) with slope = - [tex]\frac{1}{3}[/tex]

The equation in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept ) , then

y = - [tex]\frac{1}{3}[/tex] x + c ← is the partial equation

To find c substitute (- 3, 5 ) into the partial equation

5 = 1 + c ⇒ c = 5 - 1 = 4

y = - [tex]\frac{1}{3}[/tex] x + 4 ← equation of perpendicular bisector

ACCESS MORE