[tex]\huge \dag \sf{Answer \: it}[/tex]​
The question is below.

[tex]2 \sqrt{x} - 14 = \frac{288}{ \sqrt{x} } [/tex]
NOTE: Don't copy from web
Need Answer with explanation
Don't spam
If you don't know the answer, don't answer.

Best of luck guys......

Respuesta :

Answer:

[tex]to \: know \: the \: solution[/tex]

[tex]refer \: to \: the \: above \: attatchment[/tex]

Ver imagen Аноним
Ver imagen Аноним

[tex]\huge \bf༆ Answer ༄[/tex]

Here's the solution ~

  • [tex] \sf 2\sqrt{x} - 14 = \dfrac{288}{ \sqrt{x} } [/tex]

  • [tex] \sf \sqrt{x} (2 \sqrt{x} - 14) = 288[/tex]

  • [tex] \sf 2x - 14 \sqrt{x} - 288 = 0[/tex]

  • [tex] \sf2x - 32 \sqrt{x} + 18 \sqrt{x} - 288 = 0[/tex]

  • [tex] \sf2 \sqrt{x} ( \sqrt{x} - 16) + 18( \sqrt{x } - 16 ) = 0[/tex]

  • [tex] \sf(2 \sqrt{x} + 18) ( \sqrt{x} - 16) = 0[/tex]

There are two cases now ~

Case #1

  • [tex] \sf2 \sqrt{x} + 18 = 0[/tex]

  • [tex] \sf2 \sqrt{x} = - 18[/tex]

  • [tex] \sf \sqrt{x} = - 18 \div 2[/tex]

  • [tex] \sf \sqrt{x} = - 9[/tex]

  • [tex] \sf x = ( - 9) {}^{2} [/tex]

  • [tex] \sf{x = 81}[/tex]

Case #2

  • [tex] \sf \sqrt{x} - 16 = 0[/tex]

  • [tex] \sf \sqrt{x} = 16[/tex]

  • [tex] \sf x = (16) {}^{2} [/tex]

  • [tex] \sf{x = 256}[/tex]

ACCESS MORE