Respuesta :
- Let the breadth of rectangle be x.Thus, the length will be 2x.And we given – Perimeter is 72 meter.
⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀
[tex]\qquad[/tex][tex] \pink{\bf \longrightarrow Perimeter _{(Rectangular) } = 2( Length + Breadth) }[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 72 = 2( 2x + x) [/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 72 = 6x[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow x =\cancel{\dfrac{72}{6}} [/tex]
[tex]\qquad[/tex][tex] \pink{\bf\longrightarrow x = 12 \: m} [/tex]
- Breadth of rectangle is 12 m.
We know that, value of x is '12'. Therefore, we'll substitute the value of x in given Length 2x to find out the Length. Therefore —
⠀
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf Length = \Big\{2x \Big\}\\\\[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf Length = 2 \times 12\\\\[/tex]
[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow{\pmb{\sf{Length = 24\;m}}}}\\\\[/tex]
- Hence, length will be 24 m.
[tex]\rule{250px}{.2ex}\\[/tex]
More To know :-
⠀
☀️[tex]\sf Area _{(Rectangle) }= \bf{Length \times Breadth}[/tex]
☀️[tex]\sf Diagonal_{(Rectangle)} = \bf{\sqrt{(Length)^2 + (Breadth)^2}}[/tex]
⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀
Given :
- The length of a rectangle is twice its breadth and it's perimeter is 72 m, We are to find the length and breadth of the rectangle.
[tex] \: [/tex]
Solution :
Let's assume the breadth of the rectangle as x then the length will become 2x.
We know that,
- Perimeter = 2( length + breadth)
So,
According to the Question :
⇢ 72 = 2( 2x + x)
⇢ 72 = 2(3x)
⇢ 72 = 6x
⇢ 6x = 72
⇢ x = 72/6
⇢ x = 12
Hence,
- Breadth = 12m
- Length = 2(12)m = 24m