Respuesta :

  • Let the breadth of rectangle be x.Thus, the length will be 2x.And we given – Perimeter is 72 meter.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

[tex]\qquad[/tex][tex] \pink{\bf \longrightarrow Perimeter _{(Rectangular) } = 2( Length + Breadth) }[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow 72 = 2( 2x + x) [/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow 72 = 6x[/tex]

[tex]\qquad[/tex][tex] \sf \longrightarrow x =\cancel{\dfrac{72}{6}} [/tex]

[tex]\qquad[/tex][tex] \pink{\bf\longrightarrow x = 12 \: m} [/tex]

  • Breadth of rectangle is 12 m.

We know that, value of x is '12'. Therefore, we'll substitute the value of x in given Length 2x to find out the Length. Therefore —

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf Length = \Big\{2x \Big\}\\\\[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf Length = 2 \times 12\\\\[/tex]

[tex]\qquad[/tex] [tex]\purple{\twoheadrightarrow{\pmb{\sf{Length = 24\;m}}}}\\\\[/tex]

  • Hence, length will be 24 m.

[tex]\rule{250px}{.2ex}\\[/tex]

More To know :-

☀️[tex]\sf Area _{(Rectangle) }= \bf{Length \times Breadth}[/tex]

☀️[tex]\sf Diagonal_{(Rectangle)} = \bf{\sqrt{(Length)^2 + (Breadth)^2}}[/tex]

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Given :

  • The length of a rectangle is twice its breadth and it's perimeter is 72 m, We are to find the length and breadth of the rectangle.

[tex] \: [/tex]

Solution :

Let's assume the breadth of the rectangle as x then the length will become 2x.

We know that,

  • Perimeter = 2( length + breadth)

So,

According to the Question :

⇢ 72 = 2( 2x + x)

⇢ 72 = 2(3x)

⇢ 72 = 6x

⇢ 6x = 72

⇢ x = 72/6

⇢ x = 12

Hence,

  • Breadth = 12m
  • Length = 2(12)m = 24m

ACCESS MORE