The expression for the speed of waves in materials allows us to find the result for the speed of sound in aluminum is:
The speed of a wave in a material is determined by the relationship between its volumetric modulus and its density, it is given by the expression.
v = [tex]\sqrt{ \frac{B}{\rho} }[/tex]
where v is the speed of the wave in the material (sound), B is the volume modulus and ρ the density.
They indicate that the volumetric or elastic modulus of aluminum is;
B = 6.89 10⁴ Mpa ( [tex]\frac{10^6 \ Pa}{1 \ MPa}[/tex] ) = 6.89 10¹⁰ Pa
The density of aluminum is tabulated ρ = 2.7 10³ kg / m³
We calculate.
v = [tex]\sqrt{ \frac{6.89 \ 10^{10} }{2.7 \ 10^3 }}[/tex]
v = 5.05 10³ m / s
In conclusion using the expression for the speed of waves in materials we can find the result for the speed of sound in aluminum is:
v = 5050 m / s
Learn more about the speed of sound here: brainly.com/question/6840608