Respuesta :

Answer:

[tex]\LARGE\mathsf{f(x)\:=-\frac{3}{4}x\:+\:-\frac{5}{4}}[/tex]

Step-by-step explanation:

Slope:

Given the two points from the graph, (-3, 1) and (1, -2). Use these points to solve for the slope using the following formula:

[tex]\LARGE\mathsf{m = \frac {(y_2\: -\: y_1)}{(x_2\: -\: x_1)}}[/tex]

Let (x₁, y₁) = (-3, 1)

     (x₂, y₂) = (1, -2)

Substitute these points into the formula:

[tex]\LARGE\mathsf{m = \frac {(y_2\: -\: y_1)}{(x_2\: -\: x_1)}}[/tex]

[tex]\LARGE\mathsf{m = \frac {-2\: -\: 1}{1\: -\: (-3)}\:=\:\frac {-2\: -\: 1}{1\: +\:3}\:=\frac{-3}{4}}[/tex]

m = -¾

Therefore, the slope of the given line is -¾.

Y-intercept:

Next, we need to determine the y-intercept, which is the point on the graph where it crosses the y-axis.  In order to solve for the y-intercept, we must use the slope, m = -¾, and one of the given points, (1, -2), and substitute these values into the slope-intercept form,  f(x) = mx + b:

f(x) = mx + b

-2 = -¾( 1 ) + b

-2 = -¾ + b

Add ¾ to both sides to solve for b:

-2 + ¾ = -¾ + ¾ + b

[tex]\LARGE\mathsf{y-intercept\:(b)\:=\:-\frac{5}{4} }[/tex]

Equation of the Line in Function Notation:

Given the slope, m = -¾, and y-intercept, b = [tex]\LARGE\mathsf{-\frac{5}{4}}[/tex], the equation of the line in function notation is:

[tex]\LARGE\mathsf{f(x)\:=-\frac{3}{4}x\:+\:-\frac{5}{4}}[/tex]

ACCESS MORE