Given the function [tex]f(x)=x^2-2x-5[/tex] , determine the average rate of change of the function over the interval [tex]-5\leq x\leq 6[/tex]

PLEASE HELP ASAPP

Respuesta :

Answer:

- 1

Step-by-step explanation:

The average rate of change of f(x) in the closed interval [ a, b ] is

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

Here [ a, b ] = [ - 5, 6 ] , then

f(b) = f(6) = 6² - 2(6) - 5 = 36 - 12 - 5 = 19

f(a) = f(- 5) = (- 5)² - 2(- 5) - 5 = 25 + 10 - 5 = 30

Then

average rate of change = [tex]\frac{19-30}{6-(-5)}[/tex] = [tex]\frac{-11}{6+5}[/tex] = [tex]\frac{-11}{11}[/tex] = - 1

ACCESS MORE

Otras preguntas