Respuesta :

Answer:

[tex]13[/tex] and [tex]15[/tex].

Step-by-step explanation:

The difference between two consecutive odd integers is [tex]2[/tex].

Let [tex]x[/tex] denote the smaller one of the two numbers ([tex]x > 0[/tex].) The other number would be [tex](x + 2)[/tex].

[tex]x \, (x + 2) = 195[/tex].

Thus, [tex]x^{2} + 2\, x - 195 = 0[/tex].

Solve this equation for [tex]x[/tex] using the quadratic formula:

[tex]\begin{aligned}x_{1} &= \frac{-2 + \sqrt{2^{2} - 4\times (-195)}}{2} \\ &= \frac{-2 + \sqrt{784}}{2} \\ &= \frac{-2 + 28}{2} \\ &= 13\end{aligned}[/tex].

[tex]\begin{aligned}x_{2} &= \frac{-2 - \sqrt{2^{2} - 4\times (-195)}}{2}\\ &= \frac{-2 - 28}{2} \\ &= -15\end{aligned}[/tex].

Only [tex]x_{1} = 13[/tex] is a valid solution since [tex]x > 0[/tex] by assumption.

Therefore, the smaller one of the two odd numbers would be [tex]13[/tex]. The other integer would be [tex]13 + 2 = 15[/tex].