Given: y || z
Prove: mZ5+ m2 2 + m26 = 180°
Angles Lines Statements Reasons
21
23
25
26
m21
m23
m25
m26
L
A
M
1
2
3
y
Statements
Reasons
4
5
6
7
z
Assemble the proof by dragging tiles to
the Statements and Reasons columns
Intro
D

Given y z Prove mZ5 m2 2 m26 180 Angles Lines Statements Reasons 21 23 25 26 m21 m23 m25 m26 L A M 1 2 3 y Statements Reasons 4 5 6 7 z Assemble the proof by dr class=

Respuesta :

Answer:

Hope this helps :)

Ver imagen dalope32150

Using the above statements and reasons can be used to prove the triangle sum theorem, which is: ∠5 + ∠2 + ∠6 = 180°

What is the Triangle Sum Theorem?

The triangle sum theorem states that, when we add the all three interior angles of a triangle together, it will give us a sum of 180°.

Given that y || z:

∠1 ≅ ∠5 and ∠3 ≅ ∠6 based on the interior angles theorem. This implies that:

∠1 = ∠5 and ∠3 = ∠6 (Eqn. 1)

m∠LAM = 180° (def. of straight line angle)

Thus, using the angles addition theorem, we have:

∠1 + ∠2 + ∠3 = m∠LAM

∠1 + ∠2 + ∠3 = 180° (eqn. 2).

Using eqn. 1 and eqn. 2, substitute ∠1 = ∠5 and ∠3 = ∠6 into eqn. 2.

∠5 + ∠2 + ∠6 = 180° (substitution).

Therefore, using the above statements and reasons can be used to prove the triangle sum theorem, which is: ∠5 + ∠2 + ∠6 = 180°

Learn more about triangle sum theorem on:

https://brainly.com/question/7696843

ACCESS MORE