Respuesta :
Answer:
Approximately [tex]83[/tex] minutes.
Explanation:
Look up the relative atomic mass of [tex]\rm Ag[/tex]: [tex]M({\rm Ag}) = 107.868\; \rm g \cdot mol^{-1}[/tex].[tex]\begin{aligned}Q &= e\, (n(e)) \\ &\approx 1.602 \times 10^{-19}\; \rm C \times 1.06 \times 10^{23} \\ &\approx 1.6987 \times 10^{4}\; \rm C \end{aligned}[/tex]/.
Avogadro's number: [tex]N_A \approx 6.02 \times 10^{23}\; \rm mol^{-1}[/tex].
Elementary charge: [tex]e \approx 1.602 \times 10^{-19}\; \rm C[/tex].
Calculate the quantity of [tex]\rm Ag[/tex] atoms to reduce:
[tex]\begin{aligned}& n({\rm Ag}) \\ &= \frac{m({\rm Ag})}{M({\rm Ag})} \\ &= \frac{19\; \rm g}{107.868\; \rm g \cdot mol^{-1}} \\ & \approx 0.176\; \rm mol\end{aligned}[/tex].
By the equation, it takes one electron to reduce every [tex]\rm Ag[/tex] atom. Thus, the number of electrons required to reduce [tex]0.176\; \rm mol[/tex] of [tex]\rm Ag\![/tex] atoms would be:
[tex]n(e) = n({\rm Ag}) \approx 0.176\; \rm mol[/tex].
[tex]\begin{aligned}N(e) &= n(e) \cdot N_{A}. \\ &\approx 0.176\; \rm mol \times 6.02 \times 10^{23}\; \rm mol^{-1} \\ & \approx 1.06 \times 10^{23}\end{aligned}[/tex].
Calculate the amount of charge (in coulombs) in that many electrons:
[tex]\begin{aligned}Q &= e\, (n(e)) \\ &\approx 1.602 \times 10^{-19}\; \rm C \times 1.06 \times 10^{23} \\ &\approx 16987.1 \; \rm C \end{aligned}[/tex].
A current of [tex]1\; \rm A[/tex] carries a charge of [tex]1\; \rm C[/tex] every second. Thus, the amount of time required for this current to carry that much electron would be:"
[tex]\begin{aligned}t &= \frac{Q}{I} \\ &\approx \frac{16987.1\; \rm C}{3.4\; \rm A} \\ &\approx 83.3\; \rm s \\ &\approx 5.00\times 10^{3}\; \rm s \\ &\approx 83\; \text{minutes} \end{aligned}[/tex].