Respuesta :

Space

Answer:

[tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos (2x + \pi) \big| + C[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

U-Substitution

Trigonometric Integration

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx[/tex]

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = 2 \int {\tan (2x + \pi)} \, dx[/tex]

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:                                                                                                             [tex]\displaystyle u = 2x + \pi[/tex]
  2. [u] Differentiate [Derivative Properties]:                                                       [tex]\displaystyle du = 2 \ dx[/tex]

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \frac{2}{2} \int {2 \tan (2x + \pi)} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                               [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \frac{2}{2} \int {\tan u} \, du[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \int {\tan u} \, du[/tex]
  4. [Integral] Trigonometric Substitution:                                                           [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos u \big| + C[/tex]
  5. [u] Back-Substitute:                                                                                       [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos (2x + \pi) \big| + C[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

ACCESS MORE