Respuesta :
Answer:
[tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos (2x + \pi) \big| + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Trigonometric Integration
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = 2 \int {\tan (2x + \pi)} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 2x + \pi[/tex]
- [u] Differentiate [Derivative Properties]: [tex]\displaystyle du = 2 \ dx[/tex]
Step 4: Integrate Pt. 3
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \frac{2}{2} \int {2 \tan (2x + \pi)} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \frac{2}{2} \int {\tan u} \, du[/tex]
- Simplify: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = \int {\tan u} \, du[/tex]
- [Integral] Trigonometric Substitution: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos u \big| + C[/tex]
- [u] Back-Substitute: [tex]\displaystyle \int {2 \tan (2x + \pi)} \, dx = - \ln \big| \cos (2x + \pi) \big| + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration