Answer:
[tex]y=\displaystyle\frac{4}{3}x-4[/tex]
Step-by-step explanation:
Hi there!
Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x=0)
1) Determine the slope (m)
[tex]m=\displaystyle\frac{y_2-y_1}{x_2-x_1}[/tex] where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are two points that fall on the graph
Plug in the given points (0,-4) and (3,0)
[tex]m=\displaystyle\frac{0-(-4)}{3-0}\\m=\displaystyle\frac{0+4}{3-0}\\m=\displaystyle\frac{4}{3}[/tex]
Therefore, the slope of the line is [tex]\displaystyle\frac{4}{3}[/tex]. Plug this into [tex]y=mx+b[/tex]:
[tex]y=\displaystyle\frac{4}{3}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=\displaystyle\frac{4}{3}x+b[/tex]
The y-intercept occurs when x=0. Because we're given that the point (0,-4), we know that the y-intercept is -4. Plug this into the equation:
[tex]y=\displaystyle\frac{4}{3}x+(-4)\\\\y=\displaystyle\frac{4}{3}x-4[/tex]
I hope this helps!