13. What is the slope-intercept form of the equation of the line shown in the graph?
(3,0)
(0-4)
O A. y = x
O B. y = -4/3x + 4
O C. y = 4/34 - 4
D. y = 3/4x + 3

13 What is the slopeintercept form of the equation of the line shown in the graph 30 04 O A y x O B y 43x 4 O C y 434 4 D y 34x 3 class=

Respuesta :

Answer:

[tex]y=\displaystyle\frac{4}{3}x-4[/tex]

Step-by-step explanation:

Hi there!

Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x=0)

1) Determine the slope (m)

[tex]m=\displaystyle\frac{y_2-y_1}{x_2-x_1}[/tex] where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are two points that fall on the graph

Plug in the given points (0,-4) and (3,0)

[tex]m=\displaystyle\frac{0-(-4)}{3-0}\\m=\displaystyle\frac{0+4}{3-0}\\m=\displaystyle\frac{4}{3}[/tex]

Therefore, the slope of the line is [tex]\displaystyle\frac{4}{3}[/tex]. Plug this into [tex]y=mx+b[/tex]:

[tex]y=\displaystyle\frac{4}{3}x+b[/tex]

2) Determine the y-intercept (b)

[tex]y=\displaystyle\frac{4}{3}x+b[/tex]

The y-intercept occurs when x=0. Because we're given that the point (0,-4), we know that the y-intercept is -4. Plug this into the equation:

[tex]y=\displaystyle\frac{4}{3}x+(-4)\\\\y=\displaystyle\frac{4}{3}x-4[/tex]

I hope this helps!