Need help pre college

Answer:
[tex]\LARGE\mathsf{y\:=\:-\frac{7}{10}x\:-\frac{21}{10} }[/tex]
Step-by-step explanation:
Given the two points, (-3, 0) and (7, -7):
We can use these points to solve for the slope, and determine the value of the y-intercept.
Let (x₁, y₁) = (-3, 0)
(x₂, y₂) = (7, -7)
Substitute these values into the following slope formula:
[tex]\large\mathsf{m = \frac {(y_2\: -\: y_1)}{(x_2\: -\: x_1)}}[/tex]
[tex]\large\mathsf{m = \frac {-7\: -\:0}{7\: -\:(-3)}\:=\:\frac{-7}{7\:+\:3}\:=\frac{-7}{10}}[/tex]
Therefore, the slope of the line is: [tex]\large\mathsf{m\:=-\frac{7}{10}}[/tex].
Next, we must determine the value of the y-intercept. The y-intercept is the point on the graph where it crosses the y-axis. The coordinates of the y-intercept is often represented by (0, b ), where the y-coordinate, b, is used as the value of the y-intercept on the slope-intercept form.
Using the slope, [tex]\large\mathsf{m\:=-\frac{7}{10}}[/tex] , and one of the given points, (-3, 0), substitute these values into the slope-intercept form, y = mx + b, and solve for the value of b:
y = mx + b
[tex]\large\mathsf{0\:=-\frac{7}{10}(-3)\:+\:b}[/tex]
[tex]\large\mathsf{0\:=\frac{21}{10}+\:b}[/tex]
Subtract [tex]\mathsf{\frac{21}{10}}[/tex] from both sides to isolate b :
[tex]\large\mathsf{0\:-\frac{21}{10}\:=\frac{21}{10}\:-\:\frac{21}{10}+\:b}[/tex]
[tex]\large\mathsf{\:-\frac{21}{10}\:=\:b}[/tex]
Therefore, the value of the y-intercept is: [tex]\large\mathsf{b\:=\:-\frac{21}{10}}[/tex].
The linear equation in slope-intercept form is: [tex]\LARGE\mathsf{y\:=\:-\frac{7}{10}x\:-\frac{21}{10} }[/tex].