Respuesta :

Step-by-step explanation:

Step 1 :Equation at the end of step 1

 (((x3) +  7x2) +  4x) -  12

Step 2 :Checking for a perfect cube

2.1    x3+7x2+4x-12  is not a perfect cube

Trying to factor by pulling out :

2.2      Factoring:  x3+7x2+4x-12

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3+7x2

Group 2:  4x-12

Pull out from each group separately :

Group 1:   (x+7) • (x2)

Group 2:   (x-3) • (4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

2.3    Find roots (zeroes) of :       F(x) = x3+7x2+4x-12

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -12.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -10.00    

     -2       1        -2.00        0.00      x+2

     -3       1        -3.00        12.00    

     -4       1        -4.00        20.00    

     -6       1        -6.00        0.00      x+6

     -12       1       -12.00        -780.00    

     1       1        1.00        0.00      x-1

     2       1        2.00        32.00    

     3       1        3.00        90.00    

     4       1        4.00        180.00    

     6       1        6.00        480.00    

     12       1        12.00        2772.00    

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x3+7x2+4x-12

can be divided by 3 different polynomials,including by  x-1

Polynomial Long Division :

2.4    Polynomial Long Division

Dividing :  x3+7x2+4x-12

                             ("Dividend")

By         :    x-1    ("Divisor")

dividend     x3  +  7x2  +  4x  -  12

- divisor  * x2     x3  -  x2        

remainder         8x2  +  4x  -  12

- divisor  * 8x1         8x2  -  8x    

remainder             12x  -  12

- divisor  * 12x0             12x  -  12

remainder                0

Quotient :  x2+8x+12  Remainder:  0

Trying to factor by splitting the middle term

2.5     Factoring  x2+8x+12

The first term is,  x2  its coefficient is  1 .

The middle term is,  +8x  its coefficient is  8 .

The last term, "the constant", is  +12

Step-1 : Multiply the coefficient of the first term by the constant   1 • 12 = 12

Step-2 : Find two factors of  12  whose sum equals the coefficient of the middle term, which is   8 .

     -12    +    -1    =    -13

     -6    +    -2    =    -8

     -4    +    -3    =    -7

     -3    +    -4    =    -7

     -2    +    -6    =    -8

     -1    +    -12    =    -13

     1    +    12    =    13

     2    +    6    =    8    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  2  and  6

                    x2 + 2x + 6x + 12

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x+2)

             Add up the last 2 terms, pulling out common factors :

                   6 • (x+2)

Step-5 : Add up the four terms of step 4 :

                   (x+6)  •  (x+2)

            Which is the desired factorization

Final result :

 (x + 6) • (x + 2) • (x - 1)