Respuesta :

Applying the properties of a rhombus and the Pythagorean Theorem, the length of one side of the rhombus is: 14.9

Recall:

  • The diagonals of a rhombus bisect each other at right angles, thereby forming 4 right triangles.
  • Half of a diagonal and half of the other diagonal make up a right triangle.

Thus, given:

  • EG = 22 (diagonal)
  • FH = 20 (diagonal).

Find the length of one side using Pythagorean theorem as shown below:

[tex]HG = \sqrt{(\frac{1}{2}EG)^2 + (\frac{1}{2}FH)^2 } \\\\[/tex]

  • Substitute

[tex]HG = \sqrt{(\frac{1}{2} \times 22)^2 + (\frac{1}{2} \times 20)^2 } \\\\HG = \sqrt{11^2 + 10^2} \\\\\mathbf{HG = 14.9}[/tex]

Therefore, applying the properties of a rhombus and the Pythagorean Theorem, the length of one side of the rhombus is: 14.9

Learn more here:

https://brainly.com/question/24618146

ACCESS MORE