Respuesta :

9514 1404 393

Answer:

  f^-1(x) = ∛((x +5)/2)

Step-by-step explanation:

Continue to solve for y.

  [tex]x +5=2y^3\qquad\text{so far so good}\\\\\dfrac{x+5}{2}=y^3\qquad\text{divide by 2}\\\\\sqrt[3]{\dfrac{x+5}{2}}=y\qquad\text{take the cube root}\\\\\boxed{f^{-1}(x)=\sqrt[3]{\dfrac{x+5}{2}}}\qquad\text{expressed in functional form}[/tex]

If you want to "rationalize the denominator", you can multiply both numerator and denominator by 4 inside the radical. This will simplify to ...

  [tex]\displaystyle\boxed{f^{-1}(x)=\frac{1}{2}\sqrt[3]{4x+20}}[/tex]

  • y be f(x)

[tex]\\ \rm\Rrightarrow y=2x^3-5[/tex]

  • Interchange y and x

[tex]\\ \rm\Rrightarrow x=2y^3-5[/tex]

[tex]\\ \rm\Rrightarrow 2y^3=x+5[/tex]

  • Isolate y

[tex]\\ \rm\Rrightarrow y^3=\dfrac{x+5}{2}[/tex]

[tex]\\ \rm\Rrightarrow y=\sqrt[3]{\dfrac{x+5}{2}}[/tex]

  • This is the inverse

[tex]\\ \rm\Rrightarrow f^{-1}(x)=\sqrt[3]{\dfrac{x+5}{2}}[/tex]

ACCESS MORE