Respuesta :

STEP1:

Simplify

[tex] \frac{x + 4}{x - 2} \\ [/tex]

Equation at the end of step1:

[tex] \frac{ ((x {}^{2} ) - 4) }{x} \times \frac{(x + 4)}{x - 2} \\ [/tex]

Factoring: x2 - 4

Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)

Proof : (A+B) • (A-B) =

A² - AB + BA - B² =

A² - AB + AB - B² =

A² - B²

Note : AB = BA is the commutative property of multiplication.

Note : - AB + AB equals zero and is therefore eliminated from the expression.

Check : 4 is the square of 2

Check : x2 is the square of x1

Factorization is : (x + 2) • (x - 2)

Polynomial Long Division :

2.2 Polynomial Long Division

Dividing : x + 2

("Dividend")

By : x ("Divisor")

dividend x + 2

- divisor * x⁰ x

remainder 2

Quotient : 1

Remainder : 2

Equation at the end of step 2:

[tex] \frac{(x + 2) \times (x - 2)}{x} \times \frac{(x + 4)}{x - 2} \\ [/tex]

Cancel out (x-2) which appears on both sides of the fraction line.

Final result :

[tex]⇒ \frac{(x + 2) \times (x + 4)}{x} \\ [/tex]

ACCESS MORE