Rectangle CDEF with vertices C(-1,6), D(0,8), E(6,5) and F(5,3): 270 degrees counterclockwise
![Rectangle CDEF with vertices C16 D08 E65 and F53 270 degrees counterclockwise class=](https://us-static.z-dn.net/files/dd9/1b2d6c6becf4a9c4781978ae143d3c3a.jpeg)
The vertices of the image are [tex]C'(x,y) = (6, 1)[/tex], [tex]D'(x,y) = (8, 0)[/tex], [tex]E'(x,y) = (5, -6)[/tex] and [tex]F'(x,y) = (3, -5)[/tex].
Given a point [tex](x,y)[/tex], we define the rotation of that point with respect to origin by this operation:
[tex](x',y') = (x\cdot \cos \theta - y\cdot \sin \theta, x\cdot \sin \theta + y\cdot \cos \theta)[/tex] (1)
Where a counterclockwise rotation occurs when [tex]\theta > 0^{\circ}[/tex].
If we know that [tex]C(x,y) = (-1,6)[/tex], [tex]D(x,y) = (0, 8)[/tex], [tex]E(x,y) = (6,5)[/tex], [tex]F(x,y) = (5,3)[/tex] and [tex]\theta = 270^{\circ}[/tex], then the images of such points are:
[tex]C'(x, y) = (-1\cdot \cos 270^{\circ}-6\cdot \sin 270^{\circ}, -1\cdot \sin 270^{\circ}+6\cdot \cos 270^{\circ})[/tex]
[tex]C'(x,y) = (6, 1)[/tex]
[tex]D'(x,y) = (0\cdot \cos 270^{\circ}-8\cdot \sin 270^{\circ}, 0\cdot \sin 270^{\circ}+8\cdot \cos 270^{\circ})[/tex]
[tex]D'(x,y) = (8, 0)[/tex]
[tex]E'(x,y) = (6\cdot \cos 270^{\circ}-5\cdot \sin 270^{\circ}, 6\cdot \sin 270^{\circ}+5\cdot \cos 270^{\circ})[/tex]
[tex]E'(x,y) = (5, -6)[/tex]
[tex]F'(x,y) = (5\cdot \cos 270^{\circ}-3\cdot \sin 270^{\circ}, 5\cdot \sin 270^{\circ}+3\cdot \cos 270^{\circ})[/tex]
[tex]F'(x,y) = (3, -5)[/tex]
Nota - The statement is incomplete. Complete form is presented below:
Given the rectangle CDEF with vertices C(-1, 6), D(0, 8), E(6, 5) and F(5, 3), find the rectangle CDEF by rotating 270° counterclockwise.
We kindly invite to check this question on rotation: https://brainly.com/question/1571997