Respuesta :
Answer:
[tex] \huge{ \boxed{5}}[/tex]
Step-by-step explanation:
The slope of a line given two points can be found by using the formula
[tex]m = \frac{ y_2 - y _ 1}{x_ 2 - x_ 1} \\[/tex]
where
(x1 , y1) and (x2 , y2) are the points
From the question we have
[tex]m = \frac{ - 9 - 6}{ - 6 - - 9} = - \frac{15}{ - 6 + 9 } = - \frac{15}{3} = - 5 \\ [/tex]
We have the final answer as
5
Hope this helps you
Answer:
Solution :
Here's the required formula to find slope line :
[tex]\longrightarrow{\underline{\boxed{\sf{\purple{m = \dfrac{y_2 - y_1}{x_2 - x_1}}}}}}[/tex]
Here, we have provided :
[tex]\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf y_2 = - 9 \\& \sf y_1 = 6 \\ & \sf x_2 = - 6\\ & \sf x_1 = - 9\end{cases} \end{gathered}[/tex]
✇ Substituting the values in the formula to find slope line :
[tex]\begin{gathered} \qquad{\longrightarrow{\pmb{\sf{m = \dfrac{y_2 - y_1}{x_2 - x_1}}}}}\\ \\ \qquad{\longrightarrow{\sf{m = \dfrac{( - 9) - (6)}{ (- 6) - ( - 9)}}}} \\ \\ \qquad{\longrightarrow{\sf{m = \dfrac{ - 15}{ (- 6) + 9}}}} \\ \\ \qquad{\longrightarrow{\sf{m = \dfrac{ - 15}{ 3}}}}\\ \\ \qquad{\longrightarrow{\sf{m = \cancel{\dfrac{ - 15}{3}}}}} \\ \\ \qquad{\longrightarrow{\sf{m = - 5}}} \\\\ \quad\quad{\star{\underline{\boxed{\frak{\pink{m = - 5}}}}}}\end{gathered}[/tex]
Hence, the slope line is -5.
[tex]\rule{300}{1.5}[/tex]