Respuesta :

A6iy

Answer:

La respiration cellulaire est l'ensemble des processus du métabolisme cellulaire convertissant l'énergie chimique contenue dans le glucose en adénosine triphosphate (ATP). Ces processus impliquent une succession de réactions chimiques formant des voies métaboliques qui appartiennent au catabolisme, c'est-à-dire qu'elles consistent à cliver les grosses molécules biologiques en molécules plus petites, ce qui libère de l'énergie ainsi qu'un certain nombre de déchets. Ces réactions sont globalement exothermiques, c'est-à-dire qu'elles produisent de la chaleur, la plupart étant des réactions d'oxydoréduction. De ce point de vue, la respiration s'apparente chimiquement à une combustion des nutriments, jouant le rôle de donneurs d'électrons (réducteur), en présence d'un accepteur d'électrons (oxydant).

La respiration est l'une des voies essentielles permettant aux cellules de produire de l'énergie métabolique pour leur développement et leur activité. Parmi les nutriments utilisés par les cellules des animaux et des plantes, on compte les glucides (ose), les peptides (acides aminés) et les lipides (acides gras), tandis que l'oxydant le plus fréquent dans les systèmes biologiques est l'oxygène moléculaire O2. L'énergie biochimique récupérée sous forme d'ATP peut ensuite être utilisée par des processus qui consomment de l'énergie tels que les biosynthèses, la locomotion ou encore le transport actif de substances chimiques à travers les membranes biologiques. La respiration aérobie requiert du dioxygène O2 pour produire de l'ATP. C'est la voie prépondérante de dégradation du pyruvate, issu de la glycolyse. Celle-ci se déroule dans le cytosol, mais le pyruvate doit pénétrer dans les mitochondries pour y être entièrement oxydé par le cycle de Krebs, lequel se déroule dans la matrice mitochondriale. Le cycle de Krebs convertit le pyruvate en dioxyde de carbone CO2 et en coenzymes réduites (NADH et FADH2), coenzymes dont les électrons à haut potentiel de transfert contiennent l'essentiel de l'énergie chimique des molécules dégradées. Ces coenzymes réduites sont alors oxydées par la chaîne respiratoire dans la membrane mitochondriale interne. L'énergie des électrons à haut potentiel de transfert permet de pomper des protons hors de la matrice mitochondriale vers l'espace intermembranaire. Il s'établit un gradient de concentration de protons à travers la membrane interne, lequel génère un gradient électrochimique suffisant pour actionner l'ATP synthase, une enzyme capable de phosphoryler l'ADP en ATP grâce à l'énergie emmagasinée dans ce gradient électrochimique. On appelle phosphorylation oxydative l'ensemble formé par la chaîne respiratoire et l'ATP synthase couplés par gradient électrochimique.

Les manuels de biologie indiquent généralement que chaque molécule de glucose entièrement oxydée par la respiration cellulaire est susceptible de produire 38 molécules d'ATP : 2 ATP issus de la glycolyse, 2 ATP issus du cycle de Krebs, et 34 ATP issus de la chaîne respiratoire. Ce rendement nominal n'est cependant jamais atteint en raison des pertes par dissipation du gradient électrochimique à travers la membrane interne des mitochondries ainsi qu'en raison du coût énergétique du transport actif du pyruvate depuis le cytosol jusqu'à la matrice mitochondriale, de sorte que les estimations actuelles s'établissent autour de 30 à 32 molécules d'ATP formées par molécules de glucose oxydée1.

La respiration aérobie est jusqu'à 15 fois plus efficace que la respiration anaérobie, qui produit seulement 2 ATP par molécule de glucose oxydée. Cependant, certains organismes anaérobie, comme les archées méthanogène, sont capables d'accroître ce rendement en utilisant d'autres accepteurs d'électrons finaux que l'oxygène.

Glycolyse

La glycolyse est une voie métabolique qui se déroule dans le cytosol des cellules de pratiquement tous les êtres vivants. Elle peut fonctionner de manière aérobie ou anaérobie, c'est-à-dire respectivement en présence ou en l'absence d'oxygène. Chez l'homme, elle conduit au pyruvate en conditions aérobies et au lactate en conditions anaérobies.

En conditions aérobies, ce processus convertit une molécule de glucose en deux molécules de pyruvate, avec production concomitante de deux molécules d'ATP. Plus précisément, il commence par consommer deux molécules d'ATP pour accroître la réactivité du glucose en vue de son clivage par l'aldolase puis en produit quatre par phosphorylation au niveau du substrat, avec production de deux molécules de NADH. La réaction globale de la glycolyse peut s'écrire :

glucose + 2 NAD+ + 2 Pi + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H+ + 2 H2O + chaleur.

Explanation:más inteligente por favor

ACCESS MORE