Respuesta :
Step-by-step explanation:
[tex]\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha + \beta + \gamma + \theta - \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
According to symmetry
[tex]\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha + \beta + \gamma - \theta + \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
[tex]\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha + \beta - \gamma + \theta + \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
[tex]\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha - \beta + \gamma + \theta + \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
[tex]\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ - \alpha + \beta + \gamma + \theta + \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
Take sum of 5 integrals
[tex]\displaystyle \sf \green{5I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ 3(\alpha + \beta + \gamma + \theta + \eta)}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}[/tex]
[tex]\displaystyle \sf \pink{5I=3\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \: d \alpha d \beta d \gamma d \theta d \eta}
[/tex]
[tex]\large \sf \green{5I=3( {2)}^{5} }[/tex]
[tex]\large \sf \pink{I={ \frac{96}{5} }^{} }[/tex]