Answer:
r ≈ 7.963 cm
Step-by-step explanation:
Given the following dimensions of a cylinder:
Volume (V) = 3785 cm³
Height (h) = 19 cm
In order to find the value of the radius, it is necessary to determine the formula for finding the radius of a cylinder.
The formula for finding the volume of a cylinder is: V = πr ²h
To isolate the radius, start by dividing both sides by π × h :
[tex]\mathsf{\frac{V} {\pi\times\:h}\:=\:\frac{\pi\:r^{2}\:h} {\pi\times\:h}}[/tex]
[tex]\mathsf{\frac{V} {\pi\times\:h}\:=\:r^{2}}[/tex]
Next, take the square root of both sides to isolate r :
[tex]\mathsf{\sqrt{\frac{V}{\pi\times\:h}} = \sqrt{r^{2}}}[/tex]
[tex]\mathsf{\:r\:=\:\sqrt{\frac{V}{\pi\times\:h}}}[/tex]
Now, we can finally substitute the given values into the formula for radius, r:
[tex]\mathsf{\:r\:=\:\sqrt{\frac{3785}{\pi\times\:19}}}[/tex]
r ≈ 7.963 cm
Therefore, the radius of the cylinder is 7.963 cm.